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Caution: This is module is undergoing heavy development. None of the API calls are final. This software is
provided without any guarantees of correctness, you will likely encounter bugs.

If you are interested in this code, please wait for the official release to use it. In the mean time, to stay informed of
development progress you are encouraged to:

• Follow this feed for updates on releases.

• Check out the github repository .

A Python framework for automated small molecule free energy driven design.

perses is a Python framework that uses OpenMM for GPU-accelerated molecular design driven by alchemical free
energy calculations.

Contents: 1

https://github.com/choderalab/perses/releases.atom
https://github.com/choderalab/perses
http://openmm.org
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CHAPTER 1

Installation

1.1 Installing via conda

The simplest way to install perses is via the conda package manager. Packages are provided on the omnia Anaconda
Cloud channel for Linux, OS X, and Win platforms. The perses Anaconda Cloud page has useful instructions and
download statistics.

If you are using the anaconda scientific Python distribution, you already have the conda package manager installed.
If not, the quickest way to get started is to install the miniconda distribution, a lightweight minimal installation of
Anaconda Python.

On linux, you can install the Python 3 version into $HOME/miniconda3 with (on bash systems):

$ wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash ./Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda3
$ export PATH="$HOME/miniconda3/bin:$PATH"

On osx, you want to use the `osx binary

$ wget https://repo.continuum.io/miniconda/Miniconda2-latest-MacOSX-x86_64.sh
$ bash ./Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda3
$ export PATH="$HOME/miniconda3/bin:$PATH"

You may want to add the new `$PATH extension to your ~/.bashrc file to ensure Anaconda Python is used by
default. Note that perses will be installed into this local Python installation, so that you will not need to worry about
disrupting existing Python installations.

Note: conda installation is the preferred method since all dependencies are automatically fetched and installed for
you.
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1.1.1 Release build

You can install the latest stable release build of perses via the conda package with

$ conda config --add channels omnia
$ conda install perses

This version is recommended for all users not actively developing new algorithms for alchemical free energy calcula-
tions.

Note: conda will automatically dependencies from binary packages automatically, including difficult-to-install
packages such as OpenMM, numpy, and scipy. This is really the easiest way to get started.

1.1.2 Development build

The bleeding-edge, absolute latest, very likely unstable development build of perses is pushed to binstar with each
GitHub commit, and can be obtained by

$ conda config --add channels omnia
$ conda install perses-dev

Warning: Development builds may be unstable and are generally subjected to less testing than releases. Use at
your own risk!

1.1.3 Upgrading your installation

To update an earlier conda installation of perses to the latest release version, you can use conda update:

$ conda update perses

4 Chapter 1. Installation
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Changelog
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CHAPTER 3

Modules

3.1 Alchemical transformations

Tools for nonequilibrium alchemical transformations

3.1.1 Nonequilibrium switching

NCMCEngine
NCMCHybridEngine
NCMCAlchemicalIntegrator
NCMCGHMCAlchemicalIntegrator

3.1.2 Relative alchemical transformations

HybridTopologyFactory

3.1.3 Principle of HybridTopologyFactory

HybridTopologyFactory is a class that automates the construction of so-called hybrid topologies and systems. In short,
this amounts to using an atom map to merge two initial systems into a new system that contains a union of the former
systems’ degrees of freedom, along with a lambda parameter to control the degree to which the hybrid represents the
old or new system. The process of creating this system happens in several steps, detailed below. Before proceeding,
there are several important caveats:

• Atom maps:

– Atoms whose constraints change between new and old system may not be mapped

– Virtual sites are only permitted if their parameters are identical in the old and new systems

• Systems:
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– Only HarmonicBondForce, HarmonicAngleForce, PeriodicTorsionForce,
NonbondedForce, and MonteCarloBarostat are supported. The presence of other
forces will raise an exception.

Basic Terminology

Throughout the rest of this document, the following terms will be referenced:

• Hybrid topology: An object that “fuses” two systems based on an atom map, and whose identity is controlled
by a set of global parameters called lambda. Mapped atoms are switched from the type in one system to the
type in the other; unmapped atoms are switched on or off, depending on which system they belong to.

• Old system: We use this to refer to the endpoint represented by lambda=0.

• New system: We use this to refer to the endpoint represented by lambda=1.

Assignment of Particles to Appropriate Groups

In order to properly assign parameters to the particles in the hybrid system, the particles are first assigned to one of
four groups:

• Environment: These atoms are mapped between the new and old systems, and additionally are not part of a residue that differs between new and old systems.

– Examples: solvent molecules, protein residues outside a changing residue

• Core: These atoms are mapped between the new and old system, but are part of a residue that differs between new and old systems. As such, they may need to change parameters.

– Example: The carbon atoms in a benzene that is being transformed to a chlorobenzene.

• Unique old: These atoms are not in the map, and are present only in the old system

– Example: an extraneous hydrogen atom in a cyclohexane being transformed into a benzene

• Unique new: These atoms are not in the map, and are present only in the new system

– Example: The chlorine atom that appears when a benzene is transformed into a chlorobenzene.

Treatment of different interaction groups

For each supported force, we have to create at least one custom force, as well as an unmodified force. In general, the
interactions are handled as follows:

• Environment-Environment: These interactions are handled by regular unmodified forces, as their parameters
never change.

• Environment-{Core, Unique old, Unique new}: These interactions are handled by Custom*Forces. For interac-
tions involving the core atoms, the interaction scales from the parameter in the old system to the parameter in
the new system as lambda is switched from 0 to 1. For interactions involving the unique atoms, the interaction
scales from full to zero as lambda switches from 0 to 1 in unique old atoms, and vice versa for unique new
atoms.

• Core-Core interactions: These interactions scale from old system parameters to new system parameters as
lambda is switched from 0 to 1.

• Core-{unique old, unique new} interactions: These interactions scale from the parameters in the old system to
the parameters in the new system as lambda is switched from 0 to 1. This means that unique atoms always
maintain intramolecular interactions.

8 Chapter 3. Modules
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• Unique-old and unique-new interactions: These are disabled.

• intra-Unique atoms: These interactions are always enabled, and as such are handled by an unmodified force.

Force terms

Given the above division of atoms into different groups, the assignment of interactions to different force classes is
straightforward.

Bonds

Bonds are handled with a HarmonicBondForce and a CustomBondForce.

• HarmonicBondForce: This handles all bond interactions that do not change with lambda.

• CustomBondForce: This handles bond interactions that change with lambda. Bond terms never become
zero; they are always on to ensure that molecules do not fly apart

Angles

Angles are also handled with a HarmonicAngleForce and a CustomAngleForce

• HarmonicAngleForce: This handles all angle interactions that do not change with lambda.

• CustomAngleForce: This handles angle interactions that change with lambda. Angle terms never become
zero; they are always on to ensure overlap.

Torsions

Torsions are handled with a PeriodicTorsionForce and a CustomTorsionForce

• PeriodicTorsionForce: This handles all torsion interactions that do not change with lambda.

• CustomTorsionForce: This handles interactions that change with lambda. Although the torsion potential
for a given group of atoms is never set to zero, the force assignments sometimes include zero as an endpoint.
This is to handle the case of torsion multiplicities greater than one.

Nonbonded (both sterics and electrostatics)

• NonbondedForce: This handles sterics and electrostatics interactions that do not change. All interactions
that are involved in custom nonbonded forces are excluded from this force.

• CustomBondForce: This handles the exceptions from the standard NonbondedForce above.

Nonbonded (Sterics)

• CustomNonbondedForce: This handles softcore sterics for interactions that change with lambda. This
force uses interaction groups to exclude interactions that do not change with lambda (and are covered by the
NonbondedForce above). This force supports no cutoff, reaction field, and PME. An important note relates
to the dispersion correction; by default, it is not enabled to improve performance. However, it can be enabled as
a constructor argument in the HybridTopologyFactory.

3.1. Alchemical transformations 9
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Nonbonded (Electrostatics)

• CustomNonbondedForce: This is a separate CustomNonbondedForce that handles electrostatic inter-
actions that change with lambda. This force uses interaction groups to exclude interactions that do not change
with lambda (and are covered by the NonbondedForce above). This force supports the options nocutoff,
reaction field, and PME.

Specific unsupported forces

Any force that is not in one of the above-mentioned classes will cause an exception to be raised. Some important
examples of this are:

• Amoeba forces

• GB forces

• CMMotionRemover

Additional Features

In addition to creating a hybrid topology dependent on a set of lambda_force functions, the HybridTopology-
Factory can also take advantage of OpenMM’s automatic differentiation to provide dU/dlambda. In order to use this
functionality, you must provide alchemical functions to the constructor of HybridTopologyFactory. These functions
are described below.

3.1.4 Basic Usage of HybridTopologyFactory

Basic Construction of Factory

In order to use the HybridTopologyFactory, several objects are necessary:

• perses.rjmc.topology_proposal.TopologyProposal is a container class which holds so-called
new and old systems, topologies, and respective atom maps. It can be created manually using the constructor,
or can be obtained through a subcalss of perses.rjmc.topology_proposal.ProposalEngine.

• You need to supply current positions and new positions for the old and new systems, respectively. It is as-
sumed that the atoms which are mapped will have the same positions. If you only have positions for the
old system, you can generate (decent) positions for the new system using perses.rjmc.geometry.
FFAllAngleGeometryEngine. You should minimize the hybrid topology that results after this to avoid
clashes, however.

• The dispersion correct is calculated for the sterics force if use_dispersion_correction is set to True.
It is false by default; whether to enable this depends on what sort of calculation you are doing:

– Your calculation requires frequent changes to lambda parameters, such as nonequilibrium switching: Set
the dispersion correction to false.

– Your calculation runs a simulation at a set of constant lambda values (that don’t change during the
simulation), such as thermodynamic integration: Set the dispersion correction to True.

• The alchemical functions argument can be supplied to the HybridTopologyFactory, in which case only
lambda will be exposed. Otherwise, each individual energy term will have a lambda associated with it.

10 Chapter 3. Modules
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Alchemical functions

The functions argument allows you to specify the mathematical relationship between a main lambda value, and each
individual lambda. Adding the functions here also automatically enables the computation of the derivative of the
energy with respect to lambda, useful for various tasks.

Some important notes about specifying the alchemical functions:

• All lambda values must be specified. More specifically, the dictionary must have the following form:

functions_dictionary = {
'lambda_bonds' : 'f_bond(lambda)'
'lambda_angles' : 'f_angle(lambda)'
'lambda_torsions' : 'f_torsion(lambda)'
'lambda_sterics' : 'f_sterics(lambda)'
'lambda_electrostatics' : 'f_electrostatics(lambda)'
}

where f_{energy_name}() is an arbitrary function of lambda compliant with OpenMM Lepton syntax. See the
OpenMM documentation for more information on what kinds of functions can be implemented there.

Example script

Below is a very simple example script that constructs a HybridTopologyFactory object that can transform a
benzene into catechol in vacuum.

#import needed functionality
from topology_proposal import SmallMoleculeSetProposalEngine, TopologyProposal
from perses.annihilation.new_relative import HybridTopologyFactory
import simtk.openmm.app as app
from openmoltools import forcefield_generators

#these are utility functions to rapidly create test systems.
from perses.tests.utils import createOEMolFromIUPAC, createSystemFromIUPAC, get_data_
→˓filename

#We'll generate the systems by IUPAC name
mol_name = "benzene"
ref_mol_name = "catechol"

#create the benzene molecule and system, as well as a molecule of catechol
m, unsolv_old_system, pos_old, top_old = createSystemFromIUPAC(mol_name)
refmol = createOEMolFromIUPAC(ref_mol_name)

#The SmallMoleculeSetProposalEngine class needs smiles strings
initial_smiles = oechem.OEMolToSmiles(m)
final_smiles = oechem.OEMolToSmiles(refmol)

#set up the SystemGenerator
gaff_xml_filename = get_data_filename("data/gaff.xml")
system_generator = SystemGenerator([gaff_filename])

#The GeometryEngine will be useful for generating new positions
geometry_engine = FFAllAngleGeometryEngine()

#Instantiate the proposal engine, which will generate the TopologyProposal.
proposal_engine = SmallMoleculeSetProposalEngine(

(continues on next page)
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(continued from previous page)

[initial_smiles, final_smiles], system_generator, residue_name=mol_name)

#generate a TopologyProposal with the SmallMoleculeSetProposalEngine
topology_proposal = proposal_engine.propose(solvated_system, solvated_topology)

#Generate new positions with the GeometryEngine--note that the second return value
→˓(logp) is ignored for this purpose
new_positions, _ = geometry_engine.propose(topology_proposal, solvated_positions,
→˓beta)

#instantiate the HybridTopologyFactory
factory = HybridTopologyFactory(topology_proposal, old_positions, new_positions)

#Now you have the objects you need to run a simulation, controlled by the `lambda`
→˓parameters.
hybrid_system = factory.hybrid_system
hybrid_topology = factory.hybrid_topology
initial_hybrid_positions = factory.hybrid_positions

3.2 Bias engine

Bias engine for sampling chemical space

BiasEngine
MinimizedPotentialBias

3.3 Molecular geometry generation via RJMC

Reversible jump Monte Carlo (RJMC) engine for sampling molecular geometries in which atoms are cre-
ated/destroyed.

3.3.1 Topology proposal engines

TopologyProposal
ProposalEngine
SmallMoleculeSetProposalEngine
PolymerProposalEngine
PointMutationEngine
PeptideLibraryEngine
NullProposalEngine
NaphthaleneProposalEngine
ButaneProposalEngine
PropaneProposalEngine

3.3.2 OpenMM System generation utilities
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SystemGenerator

3.3.3 Geometry proposal engines

GeometryEngine
FFAllAngleGeometryEngine
OmegaGeometryEngine

3.3.4 Geometry utility classes

PredAtomTopologyIndex
BootstrapParticleFilter
GeometrySystemGenerator
GeometrySystemGeneratorFast
PredHBond
ProposalOrderTools

3.4 Sampler stack

Samplers for driving sampling over conformations or chemical states.

ThermodynamicState
SamplerState
GHMCIntegrator
MCMCSampler
ExpandedEnsembleSampler
SAMSSampler
MultiTargetDesign
ProtonationStateSampler

3.5 Storage handling

Storange handling driver

NetCDFStorage NetCDF storage layer.

3.5.1 perses.storage.NetCDFStorage

class perses.storage.NetCDFStorage(filename, mode=’w’)
NetCDF storage layer.

Methods

3.5. Storage handling 13
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close() Close the storage layer.
get_object(envname, modname, varname[, . . . ]) Get the serialized Python object.
sync() Flush write buffer.
write_array(varname, array[, iteration]) Write a numpy array as a native NetCDF array
write_configuration(varname, positions,
topology)

Write a configuration (or one of a sequence of con-
figurations) to be stored as a native NetCDF array

write_object(varname, obj[, iteration]) Serialize a Python object, encoding as pickle when
storing as string in NetCDF.

write_quantity(varname, value[, iteration]) Write a floating-point number

__init__(filename, mode=’w’)
Create NetCDF storage layer, creating or appending to an existing file.

Parameters

filename [str] Name of storage file to bind to.

mode [str, optional, default=’w’] File open mode, ‘w’ for (over)write, ‘a’ for append.

Methods

__init__(filename[, mode]) Create NetCDF storage layer, creating or appending
to an existing file.

close() Close the storage layer.
get_object(envname, modname, varname[, . . . ]) Get the serialized Python object.
sync() Flush write buffer.
write_array(varname, array[, iteration]) Write a numpy array as a native NetCDF array
write_configuration(varname, positions,
topology)

Write a configuration (or one of a sequence of con-
figurations) to be stored as a native NetCDF array

write_object(varname, obj[, iteration]) Serialize a Python object, encoding as pickle when
storing as string in NetCDF.

write_quantity(varname, value[, iteration]) Write a floating-point number

close()
Close the storage layer.

get_object(envname, modname, varname, iteration=None)
Get the serialized Python object.

Parameters

envname [str] The name of the environment for the variable

modname [str] The name of the module for the variable

varname [str] The variable name to be stored

iteration [int, optional, default=None] The local iteration for the module, or None if this is
a singleton

Returns

obj [object] The retrieved object

sync()
Flush write buffer.

14 Chapter 3. Modules
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write_array(varname, array, iteration=None)
Write a numpy array as a native NetCDF array

Parameters

varname [str] The variable name to be stored

array [numpy.array of arbitrary dimension] The numpy array to be written

iteration [int, optional, default=None] The local iteration for the module, or None if this is
a singleton

write_configuration(varname, positions, topology, iteration=None, frame=None,
nframes=None)

Write a configuration (or one of a sequence of configurations) to be stored as a native NetCDF array

Parameters

varname [str] The variable name to be stored

positions [simtk.unit.Quantity of size [natoms,3] with units compatible with angstroms] The
positions to be written

topology [md.Topology object] The corresponding Topology object

iteration [int, optional, default=None] The local iteration for the module, or None if this is
a singleton

frame [int, optional, default=None] If these coordinates are part of multiple frames in a
sequence, the frame number

nframes [int, optional, default=None] If these coordinates are part of multiple frames in a
sequence, the total number of frames in the sequence

write_object(varname, obj, iteration=None)
Serialize a Python object, encoding as pickle when storing as string in NetCDF.

Parameters

varname [str] The variable name to be stored

obj [object] The object to be serialized

iteration [int, optional, default=None] The local iteration for the module, or None if this is
a singleton

write_quantity(varname, value, iteration=None)
Write a floating-point number

Parameters

varname [str] The variable name to be stored

value [float] The floating-point value to be written

iteration [int, optional, default=None] The local iteration for the module, or None if this is
a singleton

3.6 Analysis

Analysis methods for perses simulations.

3.6. Analysis 15
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3.6.1 Cache objects

Analysis

16 Chapter 3. Modules
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Indices and tables

• genindex

• modindex

• search
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